Groups acting on themselves by left multiplication

Recall: A group G has a natural action on itself by left multiplication.

i.e. g.h = gh. (We'll soon see that this action is both faithful and transitive.)

- EX: let G= El, a, b, c} be the non-cyclic group of order 4, 1so. to Z2×Z2, also called the Klein 4-gnoup.
 - Trick: label the elements g_1 , g_2 , g_3 , g_4 , respectively so that we can think of each element as a permutation of $\xi_1, 2, 3, 4$.

i.e.
$$\sigma_{g}(i) = j \iff gg_i = g_i$$
.

Then
$$g_{2}^{*}g_{1} = g_{2}$$
 so $\sigma_{g_{2}}(1) = 2$
 $g_{2} \cdot g_{2} = g_{1}$ so $\sigma_{g_{2}}(2) = 1$
 $g_{2} \cdot g_{3} = g_{4}$ so $\sigma_{g_{2}}(2) = 4$
 $g_{2} \cdot g_{4} = g_{3}$ so $\sigma_{g_{2}}(4) = 3$

Thus,
$$\sigma_{j_1} = (12)(34)$$

In the permutation representation of this action, we similarly compute that $g_1 = 1 \longrightarrow \sigma_{g_1} = 1$, $g_2 \longrightarrow \sigma_{g_2} = (12)(34)$, $g_3 \longrightarrow \sigma_{g_3} = (13)(24)$, $g_4 \longrightarrow \sigma_{g_4} = (14)(23)$

More generally, if $H \leq G_1$, G acts on the set A of left cosets of H by left multiplication! i.e. $g \cdot h H = gh H$. We can check this is actually a group action:

$$l \cdot hH = lhH = hH$$
 and if $g, g' \in G$, $(gg') \cdot hH = (gg')hH = g(g'hH)$
= $g \cdot (g' \cdot hH) \checkmark$

Note: This will not in general be a faithful action:

 E_X : $G = D_8$, $H = \langle s \rangle$.

There are 4 distinct cosets: IH, rH, r2H, r2H. Label them 1, 2, 3, 4.

Thus
$$S \cdot |H = SH = |H \implies \overline{c_s}(1) = 1$$

 $S \cdot r H = Sr H = r^3 H \implies \overline{c_s}(2) = 4$
 $S \cdot r^2 H = Sr^2 H = r^2 H \implies \overline{c_s}(3) = 3$
 $S \cdot r^3 = Sr^3 H = r H \implies \overline{c_s}(4) = 2$

Thus $\sigma_{\overline{s}} = (24)$

Similarly, we compute that $\sigma_r = (1234)$.

since the corresponding permutation representation is a homomorphism $D_8 \longrightarrow S_n$, we can determine where the rest of D8 goes, since we know where its generators go.

Since we know a lot about the structure of a group, we in turn know a lot about This action:

<u>Thm</u>: G a group, $H \leq G$, and let G act on the set A of left cosets of H by left multiplication. Let $T_H: G \rightarrow S_A$ be the associated permutation representation. Then

- 1.) G acts transitively on A,
- 2.) The stabilizer in G of IH & A is H,
- 3.) the kernel of the action (i.e. $\ker TT_H$) is $\bigcap_{x \in G} x Hx^{-1}$ and $\ker TT_H$ is the largest normal subgroup of G contained in H.

Pf:

1.) Let gH, hH &A. Then (hg⁻¹)·gH = hg⁻¹gH = hH, so G acts transitively.

2.)
$$g \cdot |H = |H \iff gH = |H \iff g \in H$$
.

3.)
$$kur \Pi_{H} = \{g \in G \mid g \cdot xH = xH \forall x \in G \}$$
$$= \{g \in G \mid g \times H = xH \forall x \in G \}$$
$$= \{g \in G \mid g \times e \times H \forall x \in G \}$$
$$= \{g \in G \mid g \in xHx^{-1} \forall x \in G \}$$
$$= \{g \in G \mid g \in xHx^{-1} \forall x \in G \}$$
$$= \{g \in G \mid g \in xHx^{-1} \forall x \in G \}$$

To show that ker TTH is the largest normal subgroup of G in H,

we first note that it's normal since it's the kernel of a map, and kert $H \leq H$ since if $g \cdot H = H$ then $g \in H$.

If
$$N \leq G$$
 and $N \leq H$, Then $\forall x \in G$, $N = x N x^{-1} \leq x H x^{-1}$
 $\implies N \leq \bigcap x H x^{-1} = \ker T_{H}$. \square

Now we can prove a big result in group theory:

Cayley's Theorem: Every group is isomorphic to some subgroup of a symmetric group. If $|G|=h<\infty$, then G is isomorphic to a subgroup of S_n .

<u>Pf</u>: Set H = | and apply the previous theorem. Then $\Pi_{H}: G \longrightarrow S_{A}$, where A = the cosets of $| = G_{A}$.

 $\ker \Pi_{H} = \bigcap x | x^{-1} = | \implies \Pi_{H} \text{ is injective.} \square$

Historically, finite groups were only studied as subgroups of Sn!

We can also now prove another result that will help us classify finite groups:

<u>Cor</u>: If G is a finite group of order n, and p is the smallest prime dividing n, then any subgroup of index p is normal. (Note: we already showed this in the case p=2.)

- <u>Pf</u>: Suppose $H \leq G$ and |G:H| = p. Let G act on left cosets of H, and TT_{H} the corresponding permutation representation.
- Let $K = \ker \pi_{H}$. Then $K \leq H$. Let |H:K| = k. Then |G:K| = |G:H| |H:K| = pk (by applying Lagrange's Then three times)
- Since H has p left cosets, $\Pi_{H}: G \rightarrow S_{p}$, so \mathcal{K} is isomorphic to $\Pi_{H}(G) \leq S_{p}$. Thus $|G/k| | |S_{p}| \rightarrow pk | p! \rightarrow k | (p-1)!$
- But k||G| so every prime dividing k must be $\geq p$. But the only primes dividing (p-1)! are < p. Thus, k=1.
- ⇒ |H:K|=1 => H=K, which is normal! []